首页> 外文OA文献 >Saliency Guided End-to-End Learning for Weakly Supervised Object Detection
【2h】

Saliency Guided End-to-End Learning for Weakly Supervised Object Detection

机译:弱监督对象的显着性引导端到端学习   发现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Weakly supervised object detection (WSOD), which is the problem of learningdetectors using only image-level labels, has been attracting more and moreinterest. However, this problem is quite challenging due to the lack oflocation supervision. To address this issue, this paper integrates saliencyinto a deep architecture, in which the location in- formation is explored bothexplicitly and implicitly. Specifically, we select highly confident object pro-posals under the guidance of class-specific saliency maps. The locationinformation, together with semantic and saliency information, of the selectedproposals are then used to explicitly supervise the network by imposing twoadditional losses. Meanwhile, a saliency prediction sub-network is built in thearchitecture. The prediction results are used to implicitly guide thelocalization procedure. The entire network is trained end-to-end. Experimentson PASCAL VOC demonstrate that our approach outperforms all state-of-the-arts.
机译:弱监督对象检测(WSOD)是学习检测器仅使用图像级标签的问题,已引起越来越多的关注。然而,由于缺乏位置监督,这个问题非常具有挑战性。为了解决这个问题,本文将显着性集成到一个深层架构中,在该架构中,显式和隐式地探索了位置信息。具体来说,我们在特定于类的显着性图的指导下选择高度自信的对象建议。然后,将所选提案的位置信息以及语义和显着性信息一起通过施加两个附加损失来显式地监管网络。同时,在体系结构中建立了显着性预测子网。预测结果用于隐式指导定位过程。整个网络都是端到端的培训。实验PASCAL VOC证明了我们的方法优于所有最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号